|
Educational neuroscience (or Neuroeducation,〔("Neuroeducation" Emerges as Insights into Brain Development, Learning Abilities Grow ), Dana Foundation.〕 a component of Mind Brain and Education) is an emerging scientific field that brings together researchers in cognitive neuroscience, developmental cognitive neuroscience, educational psychology, educational technology, education theory and other related disciplines to explore the interactions between biological processes and education. Researchers in educational neuroscience investigate the neural mechanisms of reading,〔 numerical cognition, attention and their attendant difficulties including dyslexia, dyscalculia and ADHD as they relate to education. Researchers in this area may link basic findings in cognitive neuroscience with educational technology to help in curriculum implementation for mathematics education and reading education. The aim of educational neuroscience is to generate basic and applied research that will provide a new transdisciplinary account of learning and teaching, which is capable of informing education. A major goal of educational neuroscience is to bridge the gap between the two fields through a direct dialogue between researchers and educators, avoiding the "middlemen of the brain-based learning industry". These middlemen have a vested commercial interest in the selling of "neuromyths" and their supposed remedies.〔 The potential of educational neuroscience has received varying degrees of support from both cognitive neuroscientists and educators. Davis argues that medical models of cognition, "...have only a very limited role in the broader field of education and learning mainly because learning-related intentional states are not internal to individuals in a way which can be examined by brain activity." Pettito and Dunbar on the other hand, suggest that educational neuroscience "provides the most relevant level of analysis for resolving today’s core problems in education." Howard-Jones and Pickering surveyed the opinions of teachers and educators on the topic, and found that they were generally enthusiastic about the use of neuroscientific findings in the field of education, and that they felt these findings would be more likely to influence their teaching methodology than curriculum content. Some researchers take an intermediate view and feel that a direct link from neuroscience to education is a "bridge too far", but that a bridging discipline, such as cognitive psychology or educational psychology can provide a neuroscientific basis for educational practice. The prevailing opinion, however, appears to be that the link between education and neuroscience has yet to realise its full potential, and whether through a third research discipline, or through the development of new neuroscience research paradigms and projects, the time is right to apply neuroscientific research findings to education in a practically meaningful way.〔〔〔 Several academic institutions around the world are beginning to devote resources and energy to the establishment of research centres focused on educational neuroscience research. For example, the Centre for Educational Neuroscience in London UK is an inter-institutional project between University College, London, Birkbeck and the Institute of Education. The centre brings together researchers with expertise in the fields of emotional, conceptual, attentional, language and mathematical development, as well as specialists in education and learning research with the aim of building a new scientific discipline (Educational Neuroscience) in order to ultimately promote better learning. ==The need for a new discipline== The emergence of educational neuroscience has been born out of the need for a new discipline that makes scientific research practically applicable in an educational context. Addressing the broader field of "mind, brain and education", Kurt Fischer states, "The traditional model will not work. It is not enough for researchers to collect data in schools and make those data and the resulting research papers available to educators", as this method excludes teachers and learners from contributing to the formation of appropriate research methods and questions. Learning in cognitive psychology and neuroscience has focused on how individual humans and other species have evolved to extract useful information from the natural and social worlds around them. By contrast, education, and especially modern formal education, focuses on descriptions and explanations of the world that learners cannot be expected to acquire by themselves. In this way, learning in the scientific sense, and learning in the educational sense can be seen as complementary concepts. This creates a new challenge for cognitive neuroscience to adapt to the real world practical requirements of educational learning. Conversely, neuroscience creates a new challenge for education, because it provides new characterizations of the current state of the learner – including brain state, genetic state, and hormonal state - that could be relevant to learning and teaching. By providing new measures of the effects of learning and teaching, including brain structure and activity, it is possible to discriminate different types of learning method and attainment. For example, neuroscience research can already distinguish learning by rote from learning through conceptual understanding in mathematics. The United States National Academy of Sciences published an important report, stressing that, "Neuroscience has advanced to the point where it is time to think critically about the form in which research information is made available to educators so that it is interpreted appropriately for practice—identifying which research findings are ready for implementation and which are not." In their book ''The Learning Brain'', researchers from London’s "Centre for Educational Neuroscience", Blakemore & Frith outline the developmental neurophysiology of the human brain that has given rise to many theories regarding educational neuroscience. One of the fundamental pillars supporting the link between education and neuroscience is the ability of the brain to learn. Neuroscience is developing and increasing our understanding of early brain development, and how these brain changes might relate to learning processes. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「educational neuroscience」の詳細全文を読む スポンサード リンク
|